Header Ads Widget

Ticker

6/recent/ticker-posts

Light-activated contraction boosts ultrathin solar cells efficiency by 18%

The research engineers at Rice University have achieved what they said is a new benchmark in the design of atomically thin solar cells made of semiconducting perovskites, boosting their efficiency while retaining their ability to stand up to the environment.

Researchers found that sunlight itself contracts the space between atomic layers in 2D perovskites enough to enhance the material’s photovoltaic efficiency by up to 18%. In 10 years, the efficiencies of perovskites have skyrocketed from about 3% to over 25%, they said.

Perovskite solar cells have shown remarkable progress in recent years. These devices are compounds that have cubelike crystal lattices and are highly efficient at harvesting sunlight . However , their stability is quite limited compared with that of leading PV technologies. They don’t operate well to moisture, oxygen, extended periods of light, or high heat.

“A solar cell technology is expected to work for 20 to 25 years, ” said Mohite, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering. “We’ve been working for many years and continue steadily to work with bulk perovskites which can be very efficient but not as stable. In contrast, 2D perovskites have tremendous stability but are not efficient enough to put on a roof. ”

The problem is to make the solar cells both efficient and stable. In their research, the Rice University team has found that in certain 2D perovskites, sunlight effectively shrinks the space involving the atoms, improving their power to carry a current. They discovered that placing a layer of organic cations between the iodide on top and lead on the bottom enhanced interactions involving the layers. The enhanced charge transport boosts the photovoltaic efficiency of the 2D perovskite solar cells up to 18. 3%.

The Rice engineers and their colleagues in France have confirmed the experiments by computer models. “This study offered a unique opportunity to combine high tech ab initio simulation methods, material investigations using large scale national synchrotron facilities and in-situ characterizations of solar cells under operation, ” said Jacky Even, a professor of physics at INSA. “The paper depicts for initially how a percolation phenomenon suddenly releases the charge current flow in a perovskite material. ”

The results showed that after 10 minutes under a solar simulator at one-sun intensity, the 2D perovskites contracted by 0. 4% along their length and about 1% top to bottom. It doesn’t sound like a lot, but this 1% contraction in the lattice spacing induces a sizable enhancement of electron flow. The lessening of space between atoms increases conductivity threefold and boosts efficiency.



Light-activated contraction boosts ultrathin solar cells efficiency by 18%
Source: Tambay News

Post a Comment

0 Comments